几行代码轻松复现druid连接泄露的BUG之keepalive原创
1年前
341112
背景介绍
在一次druid数据库连接池连接泄露的排查分析介绍了连接泄露的分析排查过程,在几行代码轻松复现druid连接泄露的BUG之PhyTimeout介绍了当配置了phyTimeoutMillis参数情况下,连接泄露的场景,在几行代码轻松复现druid连接泄露的BUG之onFatalError介绍了当数据库操作出现某些异常情况下,连接泄露的场景,下面通过代码的方式来复现当配置了keepalive选项的情况下出现连接泄露的场景。
复现过程
连接泄露场景
模拟当配置了keepalive选项的情况下出现连接泄露的场景。
连接泄露模拟代码
import com.alibaba.druid.pool.DruidConnectionHolder;
import com.alibaba.druid.pool.DruidDataSource;
import com.alibaba.druid.pool.DruidPooledConnection;
import java.lang.reflect.Field;
import java.sql.SQLException;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class DruidAbandonedCase4Keepalive {
public static void main(String[] args) throws Exception {
Map<Long,DruidConnectionHolder> holderMap = new HashMap<>();
DruidDataSource dataSource = new DruidDataSource();
dataSource.setDriverClassName("com.mysql.cj.jdbc.Driver");
dataSource.setUsername("root");
dataSource.setPassword("123456");
dataSource.setUrl("jdbc:mysql://127.0.0.1:3306/test?serverTimezone=UTC&useUnicode=true&characterEncoding=utf-8&useSSL=false");
dataSource.setMinIdle(2);
dataSource.setKeepAlive(true);
dataSource.setTimeBetweenEvictionRunsMillis(500);
long minEvictableIdleTimeMillis = 500L;
dataSource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
long keepAliveBetweenTimeMillis = 1000L;
dataSource.setKeepAliveBetweenTimeMillis(keepAliveBetweenTimeMillis);
dataSource.init();
try{
Field destroyConnectionThreadField = DruidDataSource.class.getDeclaredField("destroyConnectionThread");
destroyConnectionThreadField.setAccessible(true);
Thread destroyConnectionThread = (Thread)destroyConnectionThreadField.get(dataSource);
destroyConnectionThread.interrupt();
Thread.State state = destroyConnectionThread.getState();
System.out.println("destroyConnectionThread state : " + state);
}catch (Exception e){
e.printStackTrace();
}
DruidPooledConnection connection1 = dataSource.getConnection();
DruidConnectionHolder holder1 = connection1.getConnectionHolder();
print(holder1);
holderMap.put(holder1.getConnectionId(),holder1);
DruidPooledConnection connection2 = dataSource.getConnection();
DruidConnectionHolder holder2 = connection2.getConnectionHolder();
print(holder2);
holderMap.put(holder2.getConnectionId(),holder2);
connection2.close();
sleep(keepAliveBetweenTimeMillis - minEvictableIdleTimeMillis + 100L);
connection1.close();
sleep(minEvictableIdleTimeMillis - 100L);
pooling(dataSource,holderMap);
shrink(dataSource);
pooling(dataSource,holderMap);
sleep(100L);
shrink(dataSource);
pooling(dataSource,holderMap);
System.out.println();
print(holder1);
print(holder2);
}
private static void sleep(long millis){
try{
Thread.sleep(millis);
}catch (InterruptedException e){
e.printStackTrace();
}
}
private static void shrink(DruidDataSource dataSource){
System.out.println();
System.out.println("调用shrink");
// 手动执行shrink
dataSource.shrink(true);
}
private static void pooling(DruidDataSource dataSource,Map<Long,DruidConnectionHolder> holderMap) throws SQLException {
System.out.println();
System.out.println("连接池中连接情况,begin");
List<Map<String, Object>> conns = dataSource.getPoolingConnectionInfo();
for (Map<String, Object> conn : conns) {
print(holderMap.get(conn.get("connectionId")));
}
System.out.println("连接池中连接情况,end");
}
private static void print(DruidConnectionHolder holder) throws SQLException {
System.out.println(holder.getConnectionId() + /*" : " + holder +*/
" idleMillis : " + (System.currentTimeMillis() - holder.getLastActiveTimeMillis()) + " isClosed:" + holder.getConnection().isClosed());
}
}
运行以上程序,输出结果如下(druid 1.2.8):
destroyConnectionThread state : TIMED_WAITING
10001 idleMillis : 6 isClosed:false
10002 idleMillis : 1 isClosed:false
连接池中连接情况,begin
10002 idleMillis : 1015 isClosed:false
10001 idleMillis : 404 isClosed:false
连接池中连接情况,end
调用shrink
连接池中连接情况,begin
10001 idleMillis : 405 isClosed:false
10002 idleMillis : 1016 isClosed:false
连接池中连接情况,end
调用shrink
连接池中连接情况,begin
10001 idleMillis : 405 isClosed:false
10002 idleMillis : 1016 isClosed:false
连接池中连接情况,end
调用shrink
连接池中连接情况,begin
10002 idleMillis : 1133 isClosed:true
连接池中连接情况,end
10001 idleMillis : 522 isClosed:false
10002 idleMillis : 1133 isClosed:true
代码执行逻辑描述:
- 为了便于测试,中断Druid-ConnectionPool-Destroy-xx线程,以便手动调用shrink;
- 获取connectionId为1001的连接,打印连接信息;
- 获取connectionId为1002的连接,打印连接信息;
- 调用close,归还connectionId为1002的连接
- sleep (keepAliveBetweenTimeMillis - minEvictableIdleTimeMillis + 100L)时长
- 调用close,归还connectionId为1001的连接
- sleep (minEvictableIdleTimeMillis - 100L)时长(两个sleep是为了让1002 idleMillis大于keepAliveBetweenTimeMillis,让1001小于minEvictableIdleTimeMillis)
- 打印连接池中连接信息
- 执行shrink
- 打印连接池中连接信息
- sleep 100ms
- 执行shrink
- 打印连接池中连接信息
- 打印1001和1002连接信息
期望执行结果:
- connectionId为1001和1002的连接都应该被连接池管理,且连接状态都应该是未关闭状态
实际执行结果:
- connectionId为1001的连接已从连接池中删除,且连接状态是未关闭状态,泄露的连接【不符合期望】;
- connectionId为1002的连接虽然在连接池中,但是连接状态是关闭状态【不符合期望】。
测试看,keepalive选项是从druid 1.1.16引入的,druid 1.1.16-1.1.24,1.2.0-1.2.17都存在连接泄露问题,druid 1.2.18-1.2.20不存在连接泄露问题。
点赞收藏
分类: