性能文章>JVM调优1个月,性能提升400倍!怎样做到的?>

JVM调优1个月,性能提升400倍!怎样做到的?转载

2月前
287015

通过这一个多月的努力,将FullGC从40次/天优化到近10天才触发一次,而且YoungGC的时间也减少了一半以上,这么大的优化,有必要记录一下中间的调优过程。

对于JVM垃圾回收,之前一直都是处于理论阶段,就知道新生代,老年代的晋升关系,这些知识仅够应付面试使用的。前一段时间,线上服务器的FullGC非常频繁,平均一天40多次,而且隔几天就有服务器自动重启了,这表明的服务器的状态已经非常不正常了,得到这么好的机会,当然要主动请求进行调优了。未调优前的服务器GC数据,FullGC非常频繁。

首先服务器的配置非常一般(2核4G),总共4台服务器集群。每台服务器的FullGC次数和时间基本差不多。其中JVM几个核心的启动参数为:

-Xms1000M -Xmx1800M -Xmn350M -Xss300K -XX:+DisableExplicitGC -XX:SurvivorRatio=4 -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 -XX:+CMSParallelRemarkEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC
  • -Xmx1800M: 设置JVM最大可用内存为1800M。
  • -Xms1000m:设置JVM初始化内存为1000m。

    此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。

  • -Xmn350M: 设置年轻代大小为350M。
    整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
  • -Xss300K: 设置每个线程的堆栈大小。
    JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。

 

第一次优化

一看参数,马上觉得新生代为什么这么小,这么小的话怎么提高吞吐量,而且会导致YoungGC的频繁触发,如上如的新生代收集就耗时830s。初始化堆内存没有和最大堆内存一致,查阅了各种资料都是推荐这两个值设置一样的,可以防止在每次GC后进行内存重新分配。基于前面的知识,于是进行了第一次的线上调优:提升新生代大小,将初始化堆内存设置为最大内存。

-Xmn350M -> -Xmn800M
-XX:SurvivorRatio=4 -> -XX:SurvivorRatio=8
-Xms1000m ->-Xms1800m
将SurvivorRatio修改为8的本意是想让垃圾在新生代时尽可能的多被回收掉。就这样将配置部署到线上两台服务器(prod,prod2另外两台不变方便对比)上后,运行了5天后,观察GC结果,YoungGC减少了一半以上的次数,时间减少了400s,但是FullGC的平均次数增加了41次。YoungGC基本符合预期设想,但是这个FullGC就完全不行了。

就这样第一次优化宣告失败。


第二次优化
在优化的过程中,我们的主管发现了有个对象T在内存中有一万多个实例,而且这些实例占据了将近20M的内存。于是根据这个bean对象的使用,在项目中找到了原因:匿名内部类引用导致的,伪代码如下:
public void doSmthing(T t){
    redis.addListener(new Listener(){
        public void onTimeout(){
            if(t.success()){
                //执行操作
            }
        }
    });
}

由于listener在回调后不会进行释放,而且回调是个超时的操作,当某个事件超过了设定的时间(1分钟)后才会进行回调,这样就导致了T这个对象始终无法回收,所以内存中会存在这么多对象实例。
通过上述的例子发现了存在内存泄漏后,首先对程序中的error log文件进行排查,首先先解决掉所有的error事件。然后再次发布后,GC操作还是基本不变,虽然解决了一点内存泄漏问题,但是可以说明没有解决根本原因,服务器还是继续莫名的重启。


 

内存泄漏调查
经过了第一次的调优后发现内存泄漏的问题,于是大家都开始将进行内存泄漏的调查,首先排查代码,不过这种效率是蛮低的,基本没发现问题。于是在线上不是很繁忙的时候继续进行dump内存,终于抓到了一个大对象。

这个对象竟然有4W多个,而且都是清一色的ByteArrowRow对象,可以确认这些数据是数据库查询或者插入时产生的了。于是又进行一轮代码分析,在代码分析的过程中,通过运维的同事发现了在一天的某个时候入口流量翻了好几倍,竟然高达83MB/s,经过一番确认,目前完全没有这么大的业务量,而且也不存在文件上传的功能。咨询了阿里云客服也说明完全是正常的流量,可以排除攻击的可能。


就在我还在调查入口流量的问题时,另外一个同事找到了根本的原因,原来是在某个条件下,会查询表中所有未处理的指定数据,但是由于查询的时候where条件中少加了模块这个条件,导致查询出的数量达40多万条,而且通过log查看当时的请求和数据,可以判断这个逻辑确实是已经执行了的,dump出的内存中只有4W多个对象,这个是因为dump时候刚好查询出了这么多个,剩下的还在传输中导致的。而且这也能非常好的解释了为什么服务器会自动重启的原因。

解决了这个问题后,线上服务器运行完全正常了,使用未调优前的参数,运行了3天左右FullGC只有5次。


 

第二次调优
内存泄漏的问题已经解决了,剩下的就可以继续调优了,经过查看GC log,发现前三次GullGC时,老年代占据的内存还不足30%,却发生了FullGC。于是进行各种资料的调查,在https://blog.csdn.net/zjwstz/article/details/77478054 博客中非常清晰明了的说明metaspace导致FullGC的情况,服务器默认的metaspace是21M,在GC log中看到了最大的时候metaspace占据了200M左右,于是进行如下调优,以下分别为prod1和prod2的修改参数,prod3,prod4保持不变。
-Xmn350M -> -Xmn800M
-Xms1000M ->1800M
-XX:MetaspaceSize=200M
-XX:CMSInitiatingOccupancyFraction=75
-Xmn350M -> -Xmn600M
-Xms1000M ->1800M
-XX:MetaspaceSize=200M
-XX:CMSInitiatingOccupancyFraction=75
prod1和2只是新生代大小不一样而已,其他的都一致。到线上运行了10天左右,进行对比:
prod1:

prod2:

prod3:

prod4:
对比来说,1,2两台服务器FullGC远远低于3,4两台,而且1,2两台服务器的YounGC对比3,4也减少了一半左右,而且第一台服务器效率更为明显,除了YoungGC次数减少,而且吞吐量比多运行了一天的3,4两台的都要多(通过线程启动数量),说明prod1的吞吐量提升尤为明显。
通过GC的次数和GC的时间,本次优化宣告成功,且prod1的配置更优,极大提升了服务器的吞吐量和降低了GC一半以上的时间。
prod1中的唯一一次FullGC:
通过GC log上也没看出原因,老年代在cms remark的时候只占据了660M左右,这个应该还不到触发FullGC的条件,而且通过前几次的YoungGC调查,也排除了晋升了大内存对象的可能,通过metaspace的大小,也没有达到GC的条件。这个还需要继续调查,有知道的欢迎指出下,这里先行谢过了。

 

总 结
通过这一个多月的调优总结出以下几点:
  • FullGC一天超过一次肯定就不正常了

  • 发现FullGC频繁的时候优先调查内存泄漏问题

  • 内存泄漏解决后,jvm可以调优的空间就比较少了,作为学习还可以,否则不要投入太多的时间

  • 如果发现CPU持续偏高,排除代码问题后可以找运维咨询下阿里云客服,这次调查过程中就发现CPU 100%是由于服务器问题导致的,进行服务器迁移后就正常了。

  • 数据查询的时候也是算作服务器的入口流量的,如果访问业务没有这么大量,而且没有攻击的问题的话可以往数据库方面调查

  • 有必要时常关注服务器的GC,可以及早发现问题

以上是最近一个多月JVM调优的过程与总结,如有错误之处欢迎指正。

文章来源:微信公众号

原文链接:https://mp.weixin.qq.com/s/V_qVixXLhQh_3S5vjKKbAw

请先登录,再评论

最后六点tips很干~

2月前

为你推荐

不起眼,但是足以让你有收获的JVM内存分析案例
分析 这个问题说白了,就是说有些int[]对象不知道是哪里来的,于是我拿他的例子跑了跑,好像还真有这么回事。点该 dump 文件详情,查看相关的 int[] 数组,点该对象的“被引用对象”,发现所
从一起GC血案谈到反射原理
前言 首先回答一下提问者的问题。这主要是由于存在大量反射而产生的临时类加载器和 ASM 临时生成的类,这些类会被保留在 Metaspace,一旦 Metaspace 即将满的时候,就会触发 Fu
关于内存溢出,咱再聊点有意思的?
概述 上篇文章讲了JVM在GC上的一个设计缺陷,揪出一个导致GC慢慢变长的JVM设计缺陷,可能有不少人还是没怎么看明白的,今天准备讲的大家应该都很容易看明白 本文其实很犹豫写不写,因为感觉没有
协助美团kafka团队定位到的一个JVM Crash问题
概述 有挺长一段时间没写技术文章了,正好这两天美团kafka团队有位小伙伴加了我微信,然后咨询了一个JVM crash的问题,大家对crash的问题都比较无奈,因为没有现场,信息量不多,碰到这类问题我
又发现一个导致JVM物理内存消耗大的Bug(已提交Patch)
概述 最近我们公司在帮一个客户查一个JVM的问题(JDK1.8.0_191-b12),发现一个系统老是被OS Kill掉,是内存泄露导致的。在查的过程中,阴差阳错地发现了JVM另外的一个Bug。这个B
JVM实战:优化我的IDEA GC
IDEA是个好东西,可以说是地球上最好的Java开发工具,但是偶尔也会卡顿,仔细想想IDEA也是Java开发的,会不会和GC有关,于是就有了接下来对IDEA的GC进行调优 IDEA默认JVM参数: -
不起眼,但是足以让你收获的JVM内存案例
今天的这个案例我觉得应该会让你涨姿势吧,不管你对JVM有多熟悉,看到这篇文章,应该还是会有点小惊讶的,不过我觉得这个案例我分享出来,是想表达不管多么奇怪的现象请一定要追究下去,会让你慢慢变得强大起来,
如何通过反射获得方法的真实参数名(以及扩展研究)
前段时间,在做一个小的工程时,遇到了需要通过反射获得方法真实参数名的场景,在这里我遇到了一些小小的问题,后来在部门老大的指导下,我解决了这个问题。通过解决这个问题,附带着我了解到了很多新的知识,我觉得