性能文章>Cobar提出的一种在分库场景下对Order By / Limit 的优化>

Cobar提出的一种在分库场景下对Order By / Limit 的优化原创

3年前
524524

Cobar 虽然是一款“古老”的数据库中间件,但目前不少公司仍然在用它,且它包含了不少有意思的算法和实现,今天就来分享 Cobar 提出的一种在分库场景下对 Order By / Limit 的优化。

原算法描述参考:https://github.com/alibaba/cobar/blob/master/doc/cobarSolution.ppt

背景

Cobar 最重要的功能就是分库分表,通常读取性能瓶颈可以通过增加从库或缓存来解决。

但写入性能在 MySQL 上只能通过分库分表来提升。

当我们把数据分布到不同的数据库上时,再查询时如果是单条数据只要找到这条数据对应的库即可,但如果是多条数据,可能分布在不同的库上时,Cobar 就需要先查询,再聚合。

来个具体例子:

如果我们要查询 tb1 表的 c1 字段,且取 c1 正序的下标(从0开始)为4、5的数据。假设分了三个库,我们为了取到正确数据,需要去这三个分库都取下标0-5的数据,假设取到如下数据:

取到3堆已排序的数据,对这3堆数据从小开始丢弃0、1、2、3号数据,保留第4、5号数据即是我们需要的。

这个算法看起来没啥问题,但如果数据量稍微变化一下,比如:

select c1 from tb1 order by c1 limit 9999999, 4

如果还按照上述的方法来做,首先得去每个分库查询 0 - 10000003的数据,然后再合并丢弃0-9999998号数据。

相当于丢弃了大约不分库时3倍的数据。这多少显得有点浪费了。

算法优化

  • Step1:将这条语句拆分成3条语句发给3个分库:
  • Step2:找出查询结果的最大和最小值,这里假设最小值为3,最大值为11
  • Step3:以最小值和最大值为条件再次查询

假设我们取得的数据如图,那么我们是不是很容易推断出这些结果之前还有多少数据?

  • Step4:反查出每一个返回结果的 offset,这里我们就能推断出分库1在最小值之前还有3333332条数据,分库2在最小值之前还有3333333条数据,分库3在最小值之前还有3333331条数据

这时,我们就可以丢弃合并后的0-9999998号数据了,分库1、2、3将最小值之前的数据都丢弃共丢弃了0-9999995号数据,再丢弃3个最小值3刚好够到了9999998,所以9999999号数据开始依次是4、5、5、6

算法分析

效率

以上例来说明,未优化前:

  • 1次查询,查询的数据总量大约 3kw,丢弃9999999条数据

优化后:

  • 第1次查询,查询数据总量约 1kw
  • 第2次查询,数据总量17
  • 丢弃3条数据

从这个例子可以看出,查询的数据量大大减少,需要计算丢弃的量也大大减少

非理想情况

可能大家能看出来,上述例子是非常理想的情况,如果数据没这么“理想”,结局又是怎样?

  • Step4 中反查的最小值之前不够丢弃怎么办,比如:
  • Step4 中反查的最小值之前的数据比需要丢弃的数据多怎么办?

可以看出,如果是这两种情况,这种算法就没法再次生效了。

优化的前提

根据上述两种情况来看,可以总结出该算法生效的前提是:

数据(排序字段)在各个分库上的分布要均匀

其实可以做个极端的假设,比如只有第一个分库上有数据,其他数据库没有数据,那么这个算法就失效了

总结

这么来看,这个算法是不是很废?确实比较废,就连 Cobar 中也没有使用。

但在某些场景下还是有比较大的提升的,分库的数据大部分时候是按字段进行取模,所以可以认为几乎是分布均匀的,此时如果 Order By / Limit 是比较深度翻页的数据,可以采取此策略,但也要进行兜底,如果返回的数据不满足条件,继续退化为最初的算法,所以单次效率可能不高,但从统计值上来看其效率可能是更高的。


搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践。

点赞收藏
捉虫大师

搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践

请先登录,查看2条精彩评论吧
快去登录吧,你将获得
  • 浏览更多精彩评论
  • 和开发者讨论交流,共同进步

为你推荐

随机一门技术分享之Netty

随机一门技术分享之Netty

MappedByteBuffer VS FileChannel:从内核层面对比两者的性能差异

MappedByteBuffer VS FileChannel:从内核层面对比两者的性能差异

4
2