性能文章>OpenJDK16 ZGC 详细源码分析>

OpenJDK16 ZGC 详细源码分析原创

492139

概览

ZGC 在 JDK11 中作为实验性功能引入后,已经经过了 5 个版本的演进,目前较之前版本有了较大的变化。本文将分析 ZGC 的设计思想和原理。

ZGC 主要设计理念如下:

  • ZGC 为了支持 TB 级内存,采用了基于 Page 的分页管理(类似于 G1 的 Region)。

  • 同时,为了加快内存访问速度,快速的进行并发标记和 relocate,ZGC 新引入了 Color Pointers;Color Pointers 与 Shenandoah GC 使用的 Brooks Pointers 机制不同,依赖内核提供的多视图映射,因此仅能支持部分操作系统的 64 位版本,适用性不如 Shenandoah GC,同时也无法支持指针压缩 CompressedOops。

  • 另外,为了高效内存管理,设计了两级内存管理系统。

内存管理

指针结构

zGlobals_x86.cpp

// Address Space & Pointer Layout 3
// --------------------------------
//
//  +--------------------------------+ 0x00007FFFFFFFFFFF (127TB)
//  .                                .
//  .                                .
//  .                                .
//  +--------------------------------+ 0x0000500000000000 (80TB)
//  |         Remapped View          |
//  +--------------------------------+ 0x0000400000000000 (64TB)
//  .                                .
//  +--------------------------------+ 0x0000300000000000 (48TB)
//  |         Marked1 View           |
//  +--------------------------------+ 0x0000200000000000 (32TB)
//  |         Marked0 View           |
//  +--------------------------------+ 0x0000100000000000 (16TB)
//  .                                .
//  +--------------------------------+ 0x0000000000000000
//
//   6               4  4  4 4
//   3               8  7  4 3                                               0
//  +------------------+----+-------------------------------------------------+
//  |00000000 00000000 |1111|1111 11111111 11111111 11111111 11111111 11111111|
//  +------------------+----+-------------------------------------------------+
//  |                  |    |
//  |                  |    * 43-0 Object Offset (44-bits, 16TB address space)
//  |                  |
//  |                  * 47-44 Metadata Bits (4-bits)  0001 = Marked0      (Address view 16-32TB)
//  |                                                  0010 = Marked1      (Address view 32-48TB)
//  |                                                  0100 = Remapped     (Address view 64-80TB)
//  |                                                  1000 = Finalizable  (Address view N/A)
//  |
//  * 63-48 Fixed (16-bits, always zero)
//
  • ZGC 指针布局有三种方式,分别用于支持 4TB、8TB、16TB 的堆空间,以上代码用于为 layout 3 支持 16TB 的布局;

  • 43-0 bit 对象地址;

  • 47-44 对象视图,分为三种对象视图:

    • Marked0、Marked1

    • Remapped

  • x86 和 aarch64 架构下最多仅支持 48 位指针,主要是因为硬件限制。通常为了节约成本,64 位处理器地址线一般仅 40-50 条,因此寻址范围远不及 64 位的理论值。

多视图

ZGC 将同一段物理内存映射到 3 个不同的虚拟内存视图,分别为 Marked0、Marked1、Remapped,这即是 ZGC 中的 Color Pointers,通过 Color Pointers 区分不同的 GC 阶段。

映射

ZGC 的多视图映射依赖于内核提供的 mmap 方法,具体代码如下

zPhysicalMemory.hpp, zPhysicalMemory.cpp, zPhysicalMemoryBacking_linux.cpp

// 物理内存管理类
class ZPhysicalMemory {
private:
  ZArray<ZPhysicalMemorySegment> _segments;
 
  void insert_segment(int index, uintptr_t start, size_t size, bool committed);
  void replace_segment(int index, uintptr_t start, size_t size, bool committed);
  void remove_segment(int index);
 
public:
  ZPhysicalMemory();
  ZPhysicalMemory(const ZPhysicalMemorySegment& segment);
  ZPhysicalMemory(const ZPhysicalMemory& pmem);
  const ZPhysicalMemory& operator=(const ZPhysicalMemory& pmem);
 
  bool is_null() const;
  size_t size() const;
 
  int nsegments() const;
  const ZPhysicalMemorySegment& segment(int index) const;
 
  void add_segments(const ZPhysicalMemory& pmem);
  void remove_segments();
 
  void add_segment(const ZPhysicalMemorySegment& segment);
  bool commit_segment(int index, size_t size);
  bool uncommit_segment(int index, size_t size);
 
  ZPhysicalMemory split(size_t size);
  ZPhysicalMemory split_committed();
};
 
// 将三个虚拟内存视图映射到同一物理内存
// 在JDK14中增加了对于ZVerifyViews JVM参数的支持(https://bugs.openjdk.java.net/browse/JDK-8232604)
void ZPhysicalMemoryManager::map(uintptr_t offset, const ZPhysicalMemory& pmem) const {
  const size_t size = pmem.size();
 
  if (ZVerifyViews) {
    // Map good view
    map_view(ZAddress::good(offset), pmem);
  } else {
    // Map all views
    map_view(ZAddress::marked0(offset), pmem);
    map_view(ZAddress::marked1(offset), pmem);
    map_view(ZAddress::remapped(offset), pmem);
  }
 
  nmt_commit(offset, size);
}
 
void ZPhysicalMemoryManager::map_view(uintptr_t addr, const ZPhysicalMemory& pmem) const {
  size_t size = 0;
 
  // 逐个映射物理内存
  // ZGC中使用segment管理物理内存,后续文章将详细介绍
  for (int i = 0; i < pmem.nsegments(); i++) {
    const ZPhysicalMemorySegment& segment = pmem.segment(i);
    _backing.map(addr + size, segment.size(), segment.start());
    size += segment.size();
  }
 
  // Setup NUMA interleaving for large pages
  if (ZNUMA::is_enabled() && ZLargePages::is_explicit()) {
    // To get granule-level NUMA interleaving when using large pages,
    // we simply let the kernel interleave the memory for us at page
    // fault time.
    os::numa_make_global((char*)addr, size);
  }
}
 
// 最终对于map的调用
// 对于linux系统,调用mmap进行映射
void ZPhysicalMemoryBacking::map(uintptr_t addr, size_t size, uintptr_t offset) const {
  // 可读、可写、修改共享
  // 如果参数start所指的地址无法成功建立映射时,则放弃映射,不对地址做修正。
  const void* const res = mmap((void*)addr, size, PROT_READ|PROT_WRITE, MAP_FIXED|MAP_SHARED, _fd, offset);
  if (res == MAP_FAILED) {
    ZErrno err;
    fatal("Failed to map memory (%s)", err.to_string());
  }
}

  • ZPhysicalMemory 是 ZGC 对于物理内存管理的抽象,收敛 ZGC 对于物理内存的访问。

  • ZPhysicalMemory 底层根据宿主操作系统调用不同的 ZPhysicalMemoryBacking 实现,进行多视图映射。

物理内存管理

ZGC 对于物理内存的管理主要在 ZPhysicalMemory 类中,此处需要注意,ZGC 上下文中的物理内存,不是真正的物理内存,而是操作系统虚拟内存。

5dc23da23ecfb3a94dc208cda2cfe80b.png

ZGC 中管理物理内存的基本单位是 segment。segment 默认与 small page size 一样,都是 2MB。引入 segment 是为了避免频繁的申请和释放内存的系统调用,一次申请 2MB,当 segment 空闲时,将加入空闲列表,等待之后重复使用。

zGlobals_x86.hpp

// 默认page size偏移量
const size_t ZPlatformGranuleSizeShift = 21; // 2MB

ZPhysicalMemorySegment 是 ZGC 对于物理内存 segment 的抽象,定义如下:

zPhysicalMemory.cpp

private:
  // 开始偏移量
  uintptr_t _start;
  // 开始偏移量+size
  uintptr_t _end;
  bool      _committed;
 
public:
  ZPhysicalMemorySegment();
  ZPhysicalMemorySegment(uintptr_t start, size_t size, bool committed);
 
  uintptr_t start() const;
  uintptr_t end() const;
  size_t size() const;
 
  bool is_committed() const;
  void set_committed(bool committed);
};

页面管理

Page 介绍

ZGC 中内存管理的基本单元是 Page(类似于 G1 中的 region),ZGC 有 3 种不同的页面类型:小型(2MB),中型(32MB)和大型(2MB 的倍数)。

zGlobals_x86.hpp

const size_t ZPlatformGranuleSizeShift = 21; // 2MB

zGlobals.hpp

// Page types
const uint8_t     ZPageTypeSmall                = 0;
const uint8_t     ZPageTypeMedium               = 1;
const uint8_t     ZPageTypeLarge                = 2;
 
// Page size shifts
const size_t      ZPageSizeSmallShift           = ZGranuleSizeShift;
extern size_t     ZPageSizeMediumShift;
 
// Page sizes
// small page 2MB
const size_t      ZPageSizeSmall                = (size_t)1 << ZPageSizeSmallShift;
 
extern size_t     ZPageSizeMedium;
 
// 对象size限制,small page不超过2MB/8, 256KB
const size_t      ZObjectSizeLimitSmall         = ZPageSizeSmall / 8; // 12.5% max waste
extern size_t     ZObjectSizeLimitMedium;

medium 页 size 的计算方法如下:

zHeuristics.cpp

void ZHeuristics::set_medium_page_size() {
  // Set ZPageSizeMedium so that a medium page occupies at most 3.125% of the
  // max heap size. ZPageSizeMedium is initially set to 0, which means medium
  // pages are effectively disabled. It is adjusted only if ZPageSizeMedium
  // becomes larger than ZPageSizeSmall.
  const size_t min = ZGranuleSize;
  const size_t max = ZGranuleSize * 16;
  const size_t unclamped = MaxHeapSize * 0.03125;
  const size_t clamped = clamp(unclamped, min, max);
  const size_t size = round_down_power_of_2(clamped);
 
  if (size > ZPageSizeSmall) {
    // Enable medium pages
    ZPageSizeMedium             = size;
    ZPageSizeMediumShift        = log2_intptr(ZPageSizeMedium);
    ZObjectSizeLimitMedium      = ZPageSizeMedium / 8;
    ZObjectAlignmentMediumShift = (int)ZPageSizeMediumShift - 13;
    ZObjectAlignmentMedium      = 1 << ZObjectAlignmentMediumShift;
  }
}

  • 取堆最大容量(Xmx)的 0.03125 unclamped;

  • 如果 unclamped 在 2MB 到 32MB 之间,clamped 赋值 unclamped;如果 unclamped 小于 2MB,则 clamped 赋值 2MB;如果 unclamped 大于 32MB,则 clamped 赋值 32MB;

  • 向下取 clamped 最接近的 2 的幂数,即为 medium 页 size;

  • 考虑到目前的硬件环境,通常的 medium 页 size 为 32MB;

  • ZObjectSizeLimitMedium 为 ZPageSizeMedium / 8,则通常情况下,medium 页的对象 size 限制为 4MB。超过 4MB 的对象需要放入 large 页。

对于 large page 的处理如下:

zObjectAllocator.cpp

uintptr_t ZObjectAllocator::alloc_large_object(size_t size, ZAllocationFlags flags) {
  uintptr_t addr = 0;
 
  // Allocate new large page
  const size_t page_size = align_up(size, ZGranuleSize);
  ZPage* const page = alloc_page(ZPageTypeLarge, page_size, flags);
  if (page != NULL) {
    // Allocate the object
    addr = page->alloc_object(size);
  }
 
  return addr;
}
  • 分配大对象时,触发分配 large page;

  • 对齐大对象 size 到 2MB 的倍数后分配 large page。

zObjectAllocator.cpp

uintptr_t ZObjectAllocator::alloc_large_object(size_t size, ZAllocationFlags flags) {
  uintptr_t addr = 0;
 
  // Allocate new large page
  const size_t page_size = align_up(size, ZGranuleSize);
  ZPage* const page = alloc_page(ZPageTypeLarge, page_size, flags);
  if (page != NULL) {
    // Allocate the object
    addr = page->alloc_object(size);
  }
 
  return addr;
}
  • 当对象 size 大于 medium 页对象 size 限制时,触发大对象分配;

  • 因此,large 页的实际 size 很可能小于 medium 页 size。

Page 的分配

Page 分配的入口在 ZHeap 的 alloc_page 方法:

zHeap.cpp

ZPage* ZObjectAllocator::alloc_page(uint8_t type, size_t size, ZAllocationFlags flags) {
  // 调用了page分配器的alloc_page函数
  ZPage* const page = ZHeap::heap()->alloc_page(type, size, flags);
  if (page != NULL) {
    // 增加使用内存数
    Atomic::add(_used.addr(), size);
  }
 
  return page;
}


zPageAllocator.cpp

ZPage* ZPageAllocator::alloc_page(uint8_t type, size_t size, ZAllocationFlags flags) {
  EventZPageAllocation event;
 
retry:
  ZPageAllocation allocation(type, size, flags);
 
  // 从page cache分配page
  // 如果分配成功,调用alloc_page_finalize完成分配
  // 分配过程中,如果是阻塞模式,有可能在安全点被阻塞
  if (!alloc_page_or_stall(&allocation)) {
    // Out of memory
    return NULL;
  }
 
  // 如果从page cache分配失败,则从物理内存申请页
  // 提交page
  ZPage* const page = alloc_page_finalize(&allocation);
  if (page == NULL) {
    // 如果commit或者map失败,则goto到retry,重新分配
    alloc_page_failed(&allocation);
    goto retry;
  }
 
  // ...
  // ...
  // ...
  return page;
}
 
bool ZPageAllocator::alloc_page_or_stall(ZPageAllocation* allocation) {
  {
    // 分配page需要上锁,因为只有一个堆
    ZLocker<ZLock> locker(&_lock);
 
    // 分配成功,返回true
    if (alloc_page_common(allocation)) {
      return true;
    }
 
    // 如果是非阻塞模式,返回false
    if (allocation->flags().non_blocking()) {
      return false;
    }
 
    // 分配请求入队,等待GC完成
    _stalled.insert_last(allocation);
  }
 
  return alloc_page_stall(allocation);
}
 
// 阻塞分配,等待GC
bool ZPageAllocator::alloc_page_stall(ZPageAllocation* allocation) {
  ZStatTimer timer(ZCriticalPhaseAllocationStall);
  EventZAllocationStall event;
  ZPageAllocationStall result;
 
  // 检查虚拟机是否已经完成初始化
  check_out_of_memory_during_initialization();
 
  do {
    // 启动异步GC
    ZCollectedHeap::heap()->collect(GCCause::_z_allocation_stall);
 
    // 挂起,等待GC结果
    result = allocation->wait();
  } while (result == ZPageAllocationStallStartGC);
 
  // ...
  // ...
  // ...
  return (result == ZPageAllocationStallSuccess);
}
  • 阻塞分配与非阻塞分配,由系统参数 ZStallOnOutOfMemory 控制,默认阻塞分配。阻塞分配时,如果分配失败,则触发 GC,等待 GC 结束后再次分配,直到分配成功。

对象分配

自从 JDK10 中的引入了 JEP 304: Garbage Collector Interface 后,OpenJDK 定义了一整套关于 GC 的虚方法,供具体的 GC 算法实现。极大了简化了开发难度和代码的可维护性。

JEP 304 定义了 CollectedHeap 类,每个 GC 都需要实现。CollectedHeap 类负责驱动 HotSpot 的 GC,以及和其他模块的交互。GC 应当实现如下功能:

  • CollectedHeap 的子类;

  • BarrierSet 集合类的实现,提供在运行时各种屏障功能;

  • CollectorPolicy 类的实现;

  • GCInterpreterSupport 的实现,提供 GC 在解释执行时各种屏障功能(使用汇编指令);

  • GCC1Support 的实现,提供 GC 在 C1 编译代码中各种屏障功能;

  • GCC2Support 的实现,提供 GC 在 C2 编译代码中各种屏障功能;

  • 最终 GC 指定参数的初始化;

  • 一个 MemoryService,提供内存池、内存管理等。

通常地,对象分配的入口在 InstanceKlass::allocate_instance,该方法调用 heap->obj_allocate()进行分配。

instanceOop InstanceKlass::allocate_instance(TRAPS) {
  bool has_finalizer_flag = has_finalizer(); // Query before possible GC
  int size = size_helper();  // Query before forming handle.
 
  instanceOop i;
 
  i = (instanceOop)Universe::heap()->obj_allocate(this, size, CHECK_NULL);
  if (has_finalizer_flag && !RegisterFinalizersAtInit) {
    // 对于实现了finalize方法的类的实例的特殊处理
    i = register_finalizer(i, CHECK_NULL);
  }
  return i;
}

CollectedHeap 对象分配流程图

对象分配一般遵循如下流程:

020f052fd4ffe1d896dee67da5b1b957.png

源码分析

ZCollectedHeap

ZCollectedHeap 重载了 CollectedHeap 的方法,其中包含了对象分配的相关方法。而核心逻辑在放在 ZHeap 中。ZCollectedHeap 中主要的成员方法如下:

class ZCollectedHeap : public CollectedHeap {
  friend class VMStructs;
 
private:
  // 软引用清理策略
  SoftRefPolicy     _soft_ref_policy;
  // 内存屏障,解释执行/C1/C2执行时对象访问的屏障
  ZBarrierSet       _barrier_set;
  // 初始化逻辑
  ZInitialize       _initialize;
  // 堆管理的核心逻辑,包括对象分配、转移、标记
  ZHeap             _heap;
  // 垃圾回收线程,触发
  ZDirector*        _director;
  // 垃圾回收线程,执行
  ZDriver*          _driver;
  // 垃圾回收线程,统计
  ZStat*            _stat;
  // 工作线程
  ZRuntimeWorkers   _runtime_workers;
}

ZHeap

ZHeap 是 ZGC 内存管理的核心类。主要变量如下:

class ZHeap {
  friend class VMStructs;
 
private:
  static ZHeap*       _heap;
  // 工作线程
  ZWorkers            _workers;
  // 对象分配器
  ZObjectAllocator    _object_allocator;
  // 页面分配器
  ZPageAllocator      _page_allocator;
  // 页表
  ZPageTable          _page_table;
  // 转发表,用于对象迁移后的指针映射
  ZForwardingTable    _forwarding_table;
  // 标记管理
  ZMark               _mark;
  // 引用处理器
  ZReferenceProcessor _reference_processor;
  // 弱引用处理器
  ZWeakRootsProcessor _weak_roots_processor;
  // 转移管理器,用于对象迁移(类比G1的疏散)
  ZRelocate           _relocate;
  // 转移集合
  ZRelocationSet      _relocation_set;
  // 从元空间卸载类
  ZUnload             _unload;
  ZServiceability     _serviceability;
}

对象分配器

对象分配的主要逻辑在 ZObjectAllocator。

对象分配器主要变量

ZObjectAllocator 的主要变量如下:

class ZObjectAllocator {
private:
  const bool         _use_per_cpu_shared_small_pages;
  // 分CPU记录使用内存size
  ZPerCPU<size_t>    _used;
  // 分CPU记录undo内存size
  ZPerCPU<size_t>    _undone;
  // 缓存行对齐的模板类
  ZContended<ZPage*> _shared_medium_page;
  // 按CPU从缓存分配对象
  ZPerCPU<ZPage*>    _shared_small_page;
}
分配方法

对象分配的核心方法是 alloc_object

uintptr_t ZObjectAllocator::alloc_object(size_t size, ZAllocationFlags flags) {
  if (size <= ZObjectSizeLimitSmall) {
    // Small
    return alloc_small_object(size, flags);
  } else if (size <= ZObjectSizeLimitMedium) {
    // Medium
    return alloc_medium_object(size, flags);
  } else {
    // Large
    return alloc_large_object(size, flags);
  }
}
  • 按对象的 size,决定调用 small page 分配、medium page 分配还是 large page 分配。

  • 分配入参除了 size 外,还有个 ZAllocationFlags。ZAllocationFlags 是个 8bit 的配置参数。

large page 分配方法如下:

uintptr_t ZObjectAllocator::alloc_large_object(size_t size, ZAllocationFlags flags) {
  uintptr_t addr = 0;
 
  // 对齐2MB
  const size_t page_size = align_up(size, ZGranuleSize);
  // 分配页面
  ZPage* const page = alloc_page(ZPageTypeLarge, page_size, flags);
  if (page != NULL) {
    // 在页面中分配对象
    addr = page->alloc_object(size);
  }
 
  return addr;
}
  • small page 分配和 medium page 分配都会调用到 alloc_object_in_shared_page 方法;

  • 小对象和中对象的分配略有不同,小对象是根据所在 CPU 从共享页面中分配对象。而中对象则是全部线程共享一个 medium page。

// shared_page:页面地址
// page_type:page类型,small还是medium
// page_size: page size
// size: 对象size
// flags: 分配标识
uintptr_t ZObjectAllocator::alloc_object_in_shared_page(ZPage** shared_page,
                                                        uint8_t page_type,
                                                        size_t page_size,
                                                        size_t size,
                                                        ZAllocationFlags flags) {
  uintptr_t addr = 0;
  // 获取一个page
  ZPage* page = Atomic::load_acquire(shared_page);
 
  if (page != NULL) {
    // 调用page的分配对象方法
    addr = page->alloc_object_atomic(size);
  }
 
  if (addr == 0) {
    // 如果刚才没有获取page成功,则分配一个new page
    ZPage* const new_page = alloc_page(page_type, page_size, flags);
    if (new_page != NULL) {
      // 先分配对象,然后加载page到shared_page缓存
      addr = new_page->alloc_object(size);
 
    retry:
      // 加载page到shared_page缓存
      ZPage* const prev_page = Atomic::cmpxchg(shared_page, page, new_page);
      if (prev_page != page) {
        if (prev_page == NULL) {
          // 如果prev_page已经淘汰,则goto到retry一直重试
          page = prev_page;
          goto retry;
        }
 
        // 其他线程加载了页面,则使用prev_page分配
        const uintptr_t prev_addr = prev_page->alloc_object_atomic(size);
        if (prev_addr == 0) {
          // 如果分配失败,则goto到retry一直重试
          page = prev_page;
          goto retry;
        }
 
        addr = prev_addr;
        undo_alloc_page(new_page);
      }
    }
  }
 
  return addr;
}

Page 内的对象分配

page 内的对象分配主要是两个方法 alloc_object_atomic 和 alloc_object,其中 alloc_object 没有锁竞争,主要用于新 page 的第一次对象分配。

先看 alloc_object_atomic

inline uintptr_t ZPage::alloc_object_atomic(size_t size) {
  assert(is_allocating(), "Invalid state");
 
  // 对象对齐,默认8字节对齐
  const size_t aligned_size = align_up(size, object_alignment());
  uintptr_t addr = top();
 
  for (;;) {
    const uintptr_t new_top = addr + aligned_size;
    if (new_top > end()) {
      // page没有申昱空间,则返回0
      return 0;
    }
 
    // cas操作更新prev_top指针
    const uintptr_t prev_top = Atomic::cmpxchg(&_top, addr, new_top);
    if (prev_top == addr) {
      // 调用ZAddress::good获取colored pointer
      return ZAddress::good(addr);
    }
 
    // 无限重试
    addr = prev_top;
  }
}

再看看 alloc_object

inline uintptr_t ZPage::alloc_object(size_t size) {
  assert(is_allocating(), "Invalid state");
 
  // 对象空间对齐,默认8字节
  const size_t aligned_size = align_up(size, object_alignment());
  const uintptr_t addr = top();
  const uintptr_t new_top = addr + aligned_size;
 
  if (new_top > end()) {
    // 剩余空间不足,返回0
    return 0;
  }
 
  _top = new_top;
  // 调用ZAddress::good获取colored pointer
  return ZAddress::good(addr);
}

Colored pointer 的计算

可以看到上述两个方法在分配结束都调用了 ZAddress::good 返回 colored pointer。看看 ZAddress::good 的实现。

inline uintptr_t ZAddress::offset(uintptr_t value) {
  return value & ZAddressOffsetMask;
}
 
inline uintptr_t ZAddress::good(uintptr_t value) {
  return offset(value) | ZAddressGoodMask;
}
 
void ZAddress::set_good_mask(uintptr_t mask) {
  ZAddressGoodMask = mask;
  ZAddressBadMask = ZAddressGoodMask ^ ZAddressMetadataMask;
  ZAddressWeakBadMask = (ZAddressGoodMask | ZAddressMetadataRemapped | ZAddressMetadataFinalizable) ^ ZAddressMetadataMask;
}
  • good 方法其实挺简单,先取 4 位染色值,然后或操作实际地址,获取 colored pointer。

  • colored pointer 将在 load barrier 中使用,后文将详细介绍 load barrier 机制。

读屏障

对于并发 GC 来说,最复杂的事情在于 GC worker 在标记-整理,而 Java 线程(Mutator)同时还在不断的创建新对象、修改字段,不停的更新对象引用关系。因此并发 GC 一般采用两种策略 Incremental Update(增量更新、CMS) 和 SATB(snapshot at beginning、G1) ,两种策略网上介绍文章很多,此处不再赘述。

SATB 重点关注引用关系的删除,可以参考我之前的博客 JVM G1 源码分析(四)- Dirty Card Queue Set(https://blog.csdn.net/a860MHz/article/details/97631300),而 Incremental Update 重点关注引用关系的增加。

而 ZGC 并没有采取类似方式,而是借助读屏障、colored pointer 来实现并发标记-整理。

原理

什么是 Load Barrier

  • 一小段在最佳位置由 JIT 注入的代码

    • 从堆中加载一个对象引用时

  • 检查这个引用是否是 bad color

    • 如果是,则自愈

Load Barrier 的触发

从堆中加载对象引用时触发 load barrier。

// 从堆中加载一个对象引用,需要load barrier
String n = person.name;
// 不需要load barrier,不是从堆中加载
String p = n;
// 不需要load barrier,不是从堆中加载
n.isEmpty();
// 不需要load barrier,不是引用类型
int age = person.age;

当引用类型 n 被赋值修改后,在下一次使用 n 前,会测试 n 的染色指针是否为 good。此时测试为 bad color 可知 n 的引用地址进行过修改,需要自愈。

触发 load barrier 的伪代码如下:

// 从堆中加载一个对象引用,需要load barrier
String n = person.name;
if (n & bad_bit_mask) {
        slow_path(register_for(n), address_of)
}

对应的汇编代码:

// String n = person.name;
mov 0x10(%rax), %rbx
// 是否bad color
test %rbx, (0x16)%r15
// 如是,进入slow path
jnz slow_path

源码分析

掩码

zGlobals.hpp

//
// Good/Bad mask states
// --------------------
//
//                 GoodMask         BadMask          WeakGoodMask     WeakBadMask
//                 --------------------------------------------------------------
//  Marked0        001              110              101              010
//  Marked1        010              101              110              001
//  Remapped       100              011              100              011
//
 
// Good/bad masks
extern uintptr_t  ZAddressGoodMask;
extern uintptr_t  ZAddressBadMask;
extern uintptr_t  ZAddressWeakBadMask;

zAddress.inline.hpp

inline bool ZAddress::is_null(uintptr_t value) {
  return value == 0;
}
 
inline bool ZAddress::is_bad(uintptr_t value) {
  return value & ZAddressBadMask;
}
 
inline bool ZAddress::is_good(uintptr_t value) {
  return !is_bad(value) && !is_null(value);
}

从以上两段代码可以很清晰看出,colored pointer 的状态是 Good/WeakGood/Bad/WeakBad 由 GoodMask 及 BadMask 来测定。

同时,GoodMask、BadMask 由 GC 所处的阶段决定。

void ZAddress::set_good_mask(uintptr_t mask) {
  ZAddressGoodMask = mask;
  ZAddressBadMask = ZAddressGoodMask ^ ZAddressMetadataMask;
  ZAddressWeakBadMask = (ZAddressGoodMask | ZAddressMetadataRemapped | ZAddressMetadataFinalizable) ^ ZAddressMetadataMask;
}
 
void ZAddress::initialize() {
  ZAddressOffsetBits = ZPlatformAddressOffsetBits();
  ZAddressOffsetMask = (((uintptr_t)1 << ZAddressOffsetBits) - 1) << ZAddressOffsetShift;
  ZAddressOffsetMax = (uintptr_t)1 << ZAddressOffsetBits;
 
  ZAddressMetadataShift = ZPlatformAddressMetadataShift();
  ZAddressMetadataMask = (((uintptr_t)1 << ZAddressMetadataBits) - 1) << ZAddressMetadataShift;
 
  ZAddressMetadataMarked0 = (uintptr_t)1 << (ZAddressMetadataShift + 0);
  ZAddressMetadataMarked1 = (uintptr_t)1 << (ZAddressMetadataShift + 1);
  ZAddressMetadataRemapped = (uintptr_t)1 << (ZAddressMetadataShift + 2);
  ZAddressMetadataFinalizable = (uintptr_t)1 << (ZAddressMetadataShift + 3);
 
  ZAddressMetadataMarked = ZAddressMetadataMarked0;
  set_good_mask(ZAddressMetadataRemapped);
}
 
void ZAddress::flip_to_marked() {
  ZAddressMetadataMarked ^= (ZAddressMetadataMarked0 | ZAddressMetadataMarked1);
  set_good_mask(ZAddressMetadataMarked);
}
 
void ZAddress::flip_to_remapped() {
  set_good_mask(ZAddressMetadataRemapped);
}

比如,ZGC 初始化后,地址视图为 Remapped,GoodMask 是 100,BadMask 是 011。进入标记阶段后,地址视图切换为 M0,GoodMask 和 BadMask 变更为 001 和 110。

屏障的进入条件

accessDecorators.cpp

// === Access Location ===
// 对堆的访问
const DecoratorSet IN_HEAP            = UCONST64(1) << 18;
// 对堆外的访问
const DecoratorSet IN_NATIVE          = UCONST64(1) << 19;
const DecoratorSet IN_DECORATOR_MASK  = IN_HEAP | IN_NATIVE;

zBarrierSet.cpp

bool ZBarrierSet::barrier_needed(DecoratorSet decorators, BasicType type) {
  assert((decorators & AS_RAW) == 0, "Unexpected decorator");
  //assert((decorators & ON_UNKNOWN_OOP_REF) == 0, "Unexpected decorator");
 
  // 是否引用类型
  if (is_reference_type(type)) {
    // 是否从堆中或者堆外加载一个对象引用
    assert((decorators & (IN_HEAP | IN_NATIVE)) != 0, "Where is reference?");
    // Barrier needed even when IN_NATIVE, to allow concurrent scanning.
    return true;
  }
 
  // Barrier not needed
  return false;
}

屏障

load barrier 的入口代码在 zBarrier.inline.hpp

// 模板函数
template <ZBarrierFastPath fast_path, ZBarrierSlowPath slow_path>
inline oop ZBarrier::barrier(volatile oop* p, oop o) {
  const uintptr_t addr = ZOop::to_address(o);
 
  // 如果是good指针,只需做一次类型转换
  if (fast_path(addr)) {
    return ZOop::from_address(addr);
  }
 
  // 否则,进入slow path
  const uintptr_t good_addr = slow_path(addr);
 
  // 指针自愈
  if (p != NULL) {
    self_heal<fast_path>(p, addr, good_addr);
  }
 
  // 类型转换
  return ZOop::from_address(good_addr);
}

  • barrier 接收两个模板函数指针,根据输入函数的执行结果决定走 fast path 还是 slow path;

  • fast path 仅需一次类型转换;

  • slow path 执行后,还需要进行指针自愈,最后返回前做类型转换。

fast path

fast path 根据执行场景和 colored pointer 不同有不少选择,使用比较多的如下:zBarrier.inline.hpp

// 又调回到ZAddress的inline函数了,都是一堆用colored pointer & 掩码的操作
inline bool ZBarrier::is_good_or_null_fast_path(uintptr_t addr) {
  return ZAddress::is_good_or_null(addr);
}
 
inline bool ZBarrier::is_weak_good_or_null_fast_path(uintptr_t addr) {
  return ZAddress::is_weak_good_or_null(addr);
}
 
inline bool ZBarrier::is_marked_or_null_fast_path(uintptr_t addr) {
  return ZAddress::is_marked_or_null(addr);
}

slow path

同样的 slow path 根据场景不同,也有好几个选择,但是使用较多的就是 load_barrier_on_oop_slow_path zBarrier.cpp

uintptr_t ZBarrier::load_barrier_on_oop_slow_path(uintptr_t addr) {
  // 迁移还是标记
  return relocate_or_mark(addr);
}
 
// 迁移
uintptr_t ZBarrier::relocate(uintptr_t addr) {
  assert(!ZAddress::is_good(addr), "Should not be good");
  assert(!ZAddress::is_weak_good(addr), "Should not be weak good");
  // 调用heap的relocate_object
  return ZHeap::heap()->relocate_object(addr);
}
迁移对象

zHeap.inline.cpp zRelocate.cpp

// 迁移对象
inline uintptr_t ZHeap::relocate_object(uintptr_t addr) {
  assert(ZGlobalPhase == ZPhaseRelocate, "Relocate not allowed");
 
  // 从forwarding table拿到地址映射关系
  // forwarding table会在后文介绍GC的执行过程时详细介绍。先简单理解成一个旧地址到新地址的映射好了。
  ZForwarding* const forwarding = _forwarding_table.get(addr);
  if (forwarding == NULL) {
    // 不在forwarding table内,那就是个good address
    return ZAddress::good(addr);
  }
 
  // 迁移对象
  return _relocate.relocate_object(forwarding, ZAddress::good(addr));
}
 
// 实际的迁移方法
uintptr_t ZRelocate::relocate_object(ZForwarding* forwarding, uintptr_t from_addr) const {
  ZForwardingCursor cursor;
 
  // 在forwarding table找到新地址
  // 如果新地址非0,则表示对象已经疏散到新page了,直接返回新地址
  // 如果新地址为0,则先迁移对象
  uintptr_t to_addr = forwarding_find(forwarding, from_addr, &cursor);
  if (to_addr != 0) {
    // Already relocated
    return to_addr;
  }
 
  // 迁移对象
  if (forwarding->retain_page()) {
    to_addr = relocate_object_inner(forwarding, from_addr, &cursor);
    forwarding->release_page();
 
    if (to_addr != 0) {
      // 迁移成功
      return to_addr;
    }
 
    // 如果迁移失败,等待GC 工作线程完成迁移整个page
    forwarding->wait_page_released();
  }
 
  return forward_object(forwarding, from_addr);
}

标记

zBarrier.cpp zHeap.inline.cpp

template <bool follow, bool finalizable, bool publish>
uintptr_t ZBarrier::mark(uintptr_t addr) {
  uintptr_t good_addr;
 
  if (ZAddress::is_marked(addr)) {
    // 如果已经标记过,或 Good掩码
    good_addr = ZAddress::good(addr);
  } else if (ZAddress::is_remapped(addr)) {
    // 如果remapped,表示GC开始前创建的对象,或 Good掩码
    // 需要标记
    good_addr = ZAddress::good(addr);
  } else {
    // 需要remap和标记
    good_addr = remap(addr);
  }
 
  // 标记对象
  if (should_mark_through<finalizable>(addr)) {
    ZHeap::heap()->mark_object<follow, finalizable, publish>(good_addr);
  }
 
  if (finalizable) {
    // 如果是可回收对象,则或Finalizable和Good掩码
    return ZAddress::finalizable_good(good_addr);
  }
 
  return good_addr;
}
 
// 调用ZHeap的remap对象
uintptr_t ZBarrier::remap(uintptr_t addr) {
  assert(!ZAddress::is_good(addr), "Should not be good");
  assert(!ZAddress::is_weak_good(addr), "Should not be weak good");
  return ZHeap::heap()->remap_object(addr);
}
 
// remap对象
inline uintptr_t ZHeap::remap_object(uintptr_t addr) {
  assert(ZGlobalPhase == ZPhaseMark ||
         ZGlobalPhase == ZPhaseMarkCompleted, "Forward not allowed");
 
  ZForwarding* const forwarding = _forwarding_table.get(addr);
  if (forwarding == NULL) {
    // 如果forwarding table中没有,则无需迁移
    return ZAddress::good(addr);
  }
 
  // 迁移对象
  // 主要是迁移上一次GC时标记的对象
  return _relocate.forward_object(forwarding, ZAddress::good(addr));
}

指针自愈

zBarrier.inline.hpp

template <ZBarrierFastPath fast_path>
inline void ZBarrier::self_heal(volatile oop* p, uintptr_t addr, uintptr_t heal_addr) {
  if (heal_addr == 0) {
    return;
  }
 
  assert(!fast_path(addr), "Invalid self heal");
  assert(fast_path(heal_addr), "Invalid self heal");
 
  // 死循环
  for (;;) {
    // CAS good指针替换原指针
    const uintptr_t prev_addr = Atomic::cmpxchg((volatile uintptr_t*)p, addr, heal_addr);
    if (prev_addr == addr) {
      // CAS成功即可返回
      return;
    }
 
    if (fast_path(prev_addr)) {
      // 如果fast path判断为true,则直接返回
      return;
    }
 
    // 走到这儿,可能是指针已经被其他barrier自愈了。
    assert(ZAddress::offset(prev_addr) == ZAddress::offset(heal_addr), "Invalid offset");
    addr = prev_addr;
  }
}

总的来说,ZGC 的 load barrier 是个非常精巧的设计,借助 colored pointer 和多视图,有效地避免了 load barrier 带来的性能压力。

加入我们

我们是线索智能营销团队,负责字节跳动线索营销型产品研发。致力于帮助百万中小广告主更快速、更高效地获取高价值客户。利用字节的精准流量、数据智能技术,为广告主提供了具有线索获取、线索跟进、培育销转和再营销增长闭环的一站式客户线索管理平台。期待您的加入。

社招:https://job.toutiao.com/s/LK66Cf7

实习生:https://job.toutiao.com/s/LK61qf7

点赞收藏
分类:标签:
字节跳动终端技术

字节跳动终端技术官方账号

请先登录,查看3条精彩评论吧
快去登录吧,你将获得
  • 浏览更多精彩评论
  • 和开发者讨论交流,共同进步

为你推荐

从 Linux 内核角度探秘 JDK MappedByteBuffer

从 Linux 内核角度探秘 JDK MappedByteBuffer

MappedByteBuffer VS FileChannel:从内核层面对比两者的性能差异

MappedByteBuffer VS FileChannel:从内核层面对比两者的性能差异

9
3