性能文章>【全网首发】使用增强版 singleflight 合并事件推送,效果炸裂!>

【全网首发】使用增强版 singleflight 合并事件推送,效果炸裂!原创

1年前
399436

hello,大家好啊,我是小楼。

最近在工作中对 Go 的 singleflight 包做了下增强,解决了一个性能问题,这里记录下,希望对你也有所帮助。

singleflight 是什么

singleflight 直接翻译为"单(次)飞(行)",它是对同一种请求的抑制,保证同一时刻相同的请求只有一个在执行,且在它执行期间的相同请求都会 Hold 直到执行完成,这些 Hold 的请求也使用这次执行的结果。

举个例子,当程序中有读(如 Redis、MySQL、Http、RPC等)请求,且并发非常高的情况,使用 singleflight 能得到比较好的效果,它限制了同一时刻只有一个请求在执行,也就是并发永远为1。

singleflight 的原理

最初 singleflight 出现在 groupcache 项目中,这个项目也是 Go 团队所写,后来该包被移到 Go 源码中,在 Go 源码中的版本经过几轮迭代,稍微有点复杂,我们以最原始的源码来讲解原理,更方便地看清本质。

https://github.com/golang/groupcache/blob/master/singleflight/singleflight.go

singleflight 把每次请求定义为 call,每个 call 对象包含了一个 waitGroup,一个 val,即请求的返回值,一个 err,即请求返回的错误。

type call struct {
 wg  sync.WaitGroup
 val interface{}
 err error
}

再定义全局的 Group,包含一个互斥锁 Mutex,一个 key 为 string,value 为 call 的 map。

type Group struct {
 mu sync.Mutex       
 m  map[string]*call
}

Group 对象有一个 Do 方法,其第一个参数是 string 类型的 key,这个 key 也就是上面说的 map 的 key,相同的 key 标志着他们是相同的请求,只有相同的请求会被抑制;第二个参数是一个函数 fn,这个函数是真正要执行的函数,例如调用 MySQL;返回值比较好理解,即最终调用的返回值和错误信息。

func (g *Group) Do(key string, fn func() (interface{}, error)(interface{}, error) {
 // ①
  g.mu.Lock()
 if g.m == nil {
  g.m = make(map[string]*call)
 }
  // ②
 if c, ok := g.m[key]; ok {
  g.mu.Unlock()
  c.wg.Wait()
  return c.val, c.err
 }
  // ③
 c := new(call)
 c.wg.Add(1)
 g.m[key] = c
 g.mu.Unlock()

 c.val, c.err = fn()
 c.wg.Done()

 g.mu.Lock()
 delete(g.m, key)
 g.mu.Unlock()

 return c.val, c.err
}

将整个代码分成三块:

  • ① 懒加载方式初始化 map;
  • ② 如果当前 key 存在,即相同请求正在调用中,就等它完成,完成后直接使用它的 value 和 error;
  • ③ 如果当前 key 不存在,即没有相同请求正在调用中,就创建一个 call 对象,并把它放进 map,接着执行 fn 函数,当函数执行完唤醒 waitGroup,并删除 map 相应的 key,返回 value 和 error。

读可以抑制,写呢?

我们通过上面的介绍能了解,singleflight 能解决并发读的问题,但我又遇到一个并发写的问题。为了能让大家快速进入状态,先花一点篇幅描述一下遇到的实际问题:

微服务中的注册中心想必大家都有所了解,如果不了解,可以去查查相关概念,或者翻看我以前的文章,老读者应该能发现我写了很多相关的文章。

服务提供方在注册之后,会将变更事件推送到消费方,推送事件的处理流程是:接收到事件,查询组装出最新的数据,然后推送给订阅者。存在两种情况可能会导致短时间内注册请求非常多,推送事件多会影响整个注册中心的性能:

  • 接口级注册(类似 Dubbo),每台机器会注册N多次
  • 服务并发发布,例如每次发布重启100台机器,那么注册的并发就可能是100

拿到这种问题,第一想到的解法是:合并推送。但,怎么合并呢?

是不是每次推送的时候等一等,等事件都来了再一把推过去就可以了?但等多久呢?什么时候该等呢?粗暴点,每秒钟推送一次,这样就能将一秒内的时间都聚合,但这会影响推送的时效性,显然不符合我们精益求精的要求。

直接使用 singleflight,能行吗?

套用上面 singleflight ,在第一个事件推送过程中,其他相同的事件被 Hold 住,等第一个事件推送完成后,这些 Hold 的事件不再执行推送直接返回。

稍微想一下就知道这样是有问题的,假设有三个事件 A、B、C,分别对应到三个版本的数据A1、B1、C1,A 最先到达,在 A 开始推送后但没完成时 B、C 事件到达,A 事件触发推送了 A1 版本的数据,B、C 事件在 A 事件推送完成后,直接丢弃,最终推送到消费者上的数据版本为 A1,但我们肯定期望推送的数据版本为 C1,画个图线感受下:

增强一点点 🤏🏻

假设有事件 A、B、C、D 先后到达,A 事件仍然先正常执行推送,在 A 事件推送的时候,B、C、D 事件 Hold 住,当 A 事件推送完成后,B 事件开始推送,B 事件将把 A 事件推送时期积攒的事件都一起推送掉,即 B、C、D 一次性推送完成。

增强代码参考

增强的定义为 WriteGroup,借用 singleflight 原先的实现,具体代码就不必解读了,对照上面的例子应该很好理解。

package singleflight

import (
 "sync"
)

type WriteGroup struct {
 mu    sync.Mutex
 wgs   map[string]*sync.WaitGroup
 group Group
}

func (g *WriteGroup) Do(key string, fn func() errorerror {
 g.mu.Lock()
 if g.wgs == nil {
  g.wgs = make(map[string]*sync.WaitGroup)
 }
 wg, ok := g.wgs[key]
 if !ok {
  wg = &sync.WaitGroup{}
  wg.Add(1)
  g.wgs[key] = wg
 }
 g.mu.Unlock()

 if !ok {
  err := fn()

  g.mu.Lock()
  wg.Done()
  delete(g.wgs, key)
  g.mu.Unlock()
  return err
 }

 wg.Wait()
 _, err := g.group.Do(key, func() (interface{}, error) {
  return nil, fn()
 })
 return err
}

效果如何?

理论上,如果没有并发,事件和以前一样推送,没有合并,当然这也没毛病。当并发大于 2 时,开始发挥威力。在实际的压测上,注册并发 1500 时,合并的事件达到 99.9%,效果相当炸裂!


搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践

 

点赞收藏
分类:标签:
捉虫大师

搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践

请先登录,查看3条精彩评论吧
快去登录吧,你将获得
  • 浏览更多精彩评论
  • 和开发者讨论交流,共同进步

为你推荐

Redis stream 用做消息队列完美吗?

Redis stream 用做消息队列完美吗?

Netty源码解析:writeAndFlush

Netty源码解析:writeAndFlush

6
3